	$w = \sqrt[3]{y^2}$	B1			
1	Additional Guidance				
2	$y\sqrt{x+1} = 1$ or $\sqrt{x+1} = \frac{1}{y}$ or $y^2 = \frac{1}{x+1}$ $y^2(x+1) = 1$ or $y^2x + y^2 = 1$ or $y^2x = 1 - y^2$ or $x+1 = \frac{1}{y^2}$ or $\frac{1}{y^2} - 1$ or $\frac{1-y^2}{y^2}$	M1			
	$x = \frac{1}{y^2} - 1$ or $x = \frac{1 - y^2}{y^2}$	A1	oe in the form $x =$		
	Additional Guidance				
	Correct answer in working repeated on answer line without x =				
	eg $x = \frac{1}{y^2} - 1$ seen in working with answer $\frac{1}{y^2} - 1$			M1M1A1	
	Allow $\left(\frac{1}{y}\right)^2$ for $\frac{1}{y^2}$ throughout				
	Allow 1 ² for 1 throughout				

Q	Answer	Mark	Comment	
	Alternative method 1			
	xy = 5x + 9	M1		
	xy - 5x = 9 or $5x - xy = -9$	M1dep	oe collection of terms	
	x(y-5) = 9 or x(5-y) = -9 or $\frac{9}{y-5}$ or $\frac{-9}{5-y}$	M1dep		
	$x = \frac{9}{y - 5}$ or $x = \frac{-9}{5 - y}$	A1		
	Alternative method 2			
3	$y = 5 + \frac{9}{x}$ or $y - \frac{9}{x} = 5$	M1	allow $\frac{5x}{x}$ for 5	
	$y-5=\frac{9}{x}$ or $5-y=-\frac{9}{x}$	M1dep		
	$\frac{1}{y-5} = \frac{x}{9}$ or $x(y-5) = 9$ or $x(5-y) = -9$ or $\frac{1}{5-y} = -\frac{x}{9}$ or $\frac{9}{y-5}$ or $\frac{-9}{5-y}$	M1dep		
	$x = \frac{9}{y - 5}$ or $x = \frac{-9}{5 - y}$	A1		

3 cont	Additional Guidance		
	$\frac{9}{y-5}$ on answer line with $x = \frac{9}{y-5}$ in working	M1M1M1A1	
	Allow the equation with x on the right, eg $\frac{9}{y-5} = x$	M1M1M1A1	
	Allow appropriate × or ÷ signs throughout		

Q	Answer	Mark	Comments		
	$xy = x + 8$ or $y = 1 + \frac{8}{x}$	M1	oe equation with fraction elim or oe equation with single fracti two terms eg $y \times x = x + 8$ or $y = \frac{x}{x} + \frac{x}{x}$	on split into	
	xy - x = 8 or $x(y - 1) = 8$ oe equation with x terms collected eg $x - xy = -8$				
4	$x = \frac{8}{y - 1}$ or $x = \frac{-8}{1 - y}$	oe equation with x the subject $eg - \frac{8}{1-y} = x$			
4	Ad	ditional G	Suidance		
	Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts				
	Correct answer in working with answer	er repeate	ed on answer line without x =		
	eg $x = \frac{8}{y-1}$ seen in working with answer $\frac{8}{y-1}$			M1M1A1	
	Do not allow incorrect simplification after correct answer seen				
	eg $x = \frac{8}{y-1}$ $x = \frac{8}{y} - 8$			M2A0	
	xy - x - 8 = 0 with no further correct	working		M1M0	

Q	Answer	Mark	Comment
5	$\frac{c}{b^4}$	B1	

Q	Answer	Mark	Comment	
	8 <i>m</i> – 4	B1		
	$9m$ + their $8m - pm = p^2$ + their 4 or $17m - pm = p^2$ + their 4	M1	collects terms after expa	ansion
	$m(9 + \text{their } 8 - p) = p^2 + \text{their } 4$ or $m(17 - p) = p^2 + \text{their } 4$ or $\frac{p^2 + 4}{17 - p}$	M1dep	oe in the form $m =$	
6	$m = \frac{p^2 + 4}{17 - p}$	A1		
	Ade	ditional G	Guidance	
	$m = \frac{p^2 + 4}{17 - p}$ in working, with $\frac{p^2 + 4}{17 - p}$ on answer line			B1M1M1A1
	8m - 1			B0
	$17m - pm = p^2 + 1$			M1
	$m(17 - p) = p^2 + 1$			M1
	$m = \frac{p^2 + 1}{17 - p}$			A0

Q	Answer	Mark	Comments	
	Alternative method 1: multiplies by x first			
	xy = 3x + 7	M1	allow yx for xy throughout	
	xy - 3x = 7	M1dep	oe collection of terms	
	or $3x - xy = -7$	шчаор		
	x(y-3)=7			
	or $x(3-y) = -7$			
	or	M1dep		
	$\frac{7}{y-3}$ or $\frac{-7}{3-y}$			
	$x = \frac{7}{v - 3}$ or $x = \frac{-7}{3 - v}$	A1	oe in the form x =	
_	y-3 3-y		may have brackets on the denominator	
7	Alternative method 2: splits up the fraction first			
	$y = 3 + \frac{7}{x}$ or $y - \frac{7}{x} = 3$	M1	allow $\frac{3x}{x}$ for 3	
	$y-3 = \frac{7}{x}$ or $3-y = -\frac{7}{x}$	M1dep		
	$\frac{1}{y-3} = \frac{x}{7}$			
	or $x(y-3) = 7$ or $x(3-y) = -7$	M1dep		
	$\frac{7}{y-3} \text{ or } \frac{-7}{3-y}$			
	$x = \frac{7}{y-3}$ or $x = \frac{-7}{3-y}$	A1	oe in the form <i>x</i> = may have brackets on the denominator	

	Additional Guidance			
	Up to M2 may be awarded for correct work with no answer or incorrect answer if this is seen amongst multiple attempts			
7	$\frac{7}{y-3}$ on answer line with $x = \frac{7}{y-3}$ in working			
cont	Allow the equation with x on the right, eg $\frac{7}{y-3} = x$	M3A1		
	Condone $x = 7/y - 3$ if not from incorrect working	M3A1		
	Allow appropriate × or ÷ signs throughout for up to M3			